VIEWPOINT Free - Electron Laser Does
نویسنده
چکیده
L ight is perhaps the pre-eminent scientific tool, not just for observing objects but also for manipulating them. Near the visible part of the spectrum, conventional laser light is especially important thanks to its coherence and tunability, which give scientists fine control of the light beam in space and frequency. But conventional lasers do not operate in the extreme ultraviolet (XUV) wavelength band, usually defined as the range 10–100 nm, let alone at shorter wavelengths. Going beyond the ultraviolet would allow, for example, better imaging resolution to be obtained. One means of generating XUV radiation is the free-electron laser (FEL). FELs provide short-wavelength versions of many of the capabilities of conventional lasers, including coherence, polarization control, ultrashort pulse durations, and high intensities. In a new study, Primož Rebernik Ribič at the Elettra Sincrotrone Trieste research center in Italy and colleagues [1] have carried a different laser capability—vortex radiation [2]—over to XUV wavelengths for the first time with a FEL.
منابع مشابه
Self-Fields Effects on Gain in a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and Axial Magnetic Field
In this paper, we have investigated the effects of self-fields on gain in a helical wiggler free electron laser with axial magnetic field and ion-channel guiding. The self-electric and self-magnetic fields of a relativistic electron beam passing through a helical wiggler are analyzed. The electron trajectories and the small signal gain are derived. Numerical investigation is shown that for grou...
متن کاملDynamics of Electrons in Free Electron Laser with Square Core Waveguides
Due to sensitive and important applications of free-electron laser in industry and medicine, improvement of the power and efficiency of laser has always been emphasized. Therefore, understanding the created field and examining the properties of the field in waveguides with different shapes and studying the sustainability of electrons movement are particularly important. In this study, the beh...
متن کاملPropagation and Interaction of Electrostatic and Electromagnetic Waves in Two Stream Free Electron Laser in the Presence of Self-Fields
A relativistic theory for two-stream free electron laser (FEL) with a one-dimensional helical wiggler and ion-channel guiding in the presence of self-fields are presented. A dispersion relation (DR) which includes coupling between the electromagnetic and the electrostatic waves is derived from a fluid model, with all of the relativistic terms related to the transverse wiggler motion. This DR is...
متن کاملA Maxwellian Perspective on Particle Acceleration
In a Maxwellian view, an accelerator of charged particles converts electromagnetic field energy into mechanical energy of the particles. A conventional accelerator based on a resonant cavity emphasizes interference between the drive fields and the the spontaneous radiation fields (those fields radiated when charged particles pass through an otherwise empty cavity). In this case the interference...
متن کاملNumerical Investigation of the Non-Uniformity of the Electric Field Distribution by Injection of Net Electron Charge in TE CO2 Laser
In this report, the distribution and deviation of electric field in the active medium of the TE CO2 laser has been investigated due to the injection of net electron charge beam as a plasma generator. Some parameters of system have been considered, such as density and mean-free-path of injected charge beam. The electric potential and electric field distribution have been simulated by solving the...
متن کامل